TRANS.Blog

経営(ヒト・モノ・カネ)に関して定量的な分析を発信する 株式会社トランスのブログ

なぜ「パルスサーベイ」から「退職予測」ができないのか?

弊社クライアントから
「パルスサーベイ」の結果から、退職予測をしたい
と言われることがあります。

 

他にも、
・「勤怠データ」から退職予測がしたい
・「ストレス耐性スコア」から退職予測がしたい
などの依頼を受けることがあります。

 

一般的には、
・パルスサーベイの結果が悪化すると「退職しやすい」
・勤怠が悪くなると「退職しやすい」
・○○のスコアが悪いと「退職しやすい」
という結果が示されることがありますが、実は「退職しやすい」ことと「退職を予測できる」ことは、全く違う話です。

※これは、「ハイパフォーマーになりやすい」と「ハイパフォーマーを予測できる」ことでも同様です。

 

この2つを混同してしまうと、
「退職しやすい傾向が出ていたから、話を聞きに行ったら、まったく退職しそうになかった」
「ハイパフォーマー傾向が出ていたから、採用したのに、活躍しなかった」
ということになりがちです。

 

今回はこの「退職しやすい」「退職を予測できる」の違いについて、解説します。

 

「退職しやすい」(=統計的有意に差がある)場合とは?

例として「退職率が10%」の1000人の企業を考えます。

この企業で分析を行ったところ、パルスサーベイの結果が悪化した人100人のうち、20%の確率で退職(=退職率20%)することがわかりました。

f:id:trans-inc:20191220194118j:plain


これは、
「パルスサーベイが悪化する」と「退職しやすい」(=統計的優位な差がある)
という結論になります。

 

※もちろん、そもそも平均に差がない(=スコアが悪化していても退職しやすくない)場合には、当然「退職予測」はできません。(パルスサーベイに、退職者と在職者で、差がないクライアント企業も多いです。)

 

「退職が予測できる」場合とは?

一方、上記の場合、
・パルスサーベイが悪化した人でも、残り80%は退職していない
状況です。

f:id:trans-inc:20191220194554j:plain

 

そのため、
パルスサーベイが悪化しても、退職しない確率が高い(80%)
「パルスサーベイが悪化した人を、退職予測」とすると、80%は外れる(=予測できていない)
状況になります。

 

実運用で退職予測に利用することを考えると、「○○の指標が悪いと、退職者が50%を超える(50%は退職予測があたる)」程度の確率になって初めて、現場としては【退職を予測】できる状況になります。

 

そのため、「退職予測」をしようとする場合には、「退職と予測した人のうち、何%が実際に退職したのか(※専門用語でいうと”再現率”)」が、実運用する上で重要になります。

※「再現率」が高くても「適合率」(実際の退職者のうち、何割を説明できるのか)が低すぎても、意味のある予測とは言えない点も難しいです。

 

まとめ

今回、
「退職しやすい」(統計的に有意である)「退職の予測ができる」が違う
ということについて、紹介しました。

 

相関係数」に関する勘違い(参考記事)と同様に「統計的有意差」による勘違いも、多く見られるため、重要な意思決定をミスジャッジしているケースが散見されます。
(もちろん統計的有意差も正しく使えば、非常に有効な手段です。)

 

 

 

弊社で提供しているTRANS.HRでは
・ワンクリックで統計的有意差の有無を確認
・予測精度をシミュレーション
できる機能を提供(β版期間中 お試し1ヵ月無料)していますので、HRのデータ分析にご興味がある方は、ぜひお声がけいただけますと嬉しく思います。

 

 

※執筆者:塚本鋭

東京大学・大学院において、機械学習や大規模シミュレーションに関する研究に従事。人工知能学会研究会優秀賞・東京大学工学系研究科長賞(総代) 等を受賞。 大学院修了後、株式会社野村総合研究所コンサルタントとして入社し、ICT・メディア領域を担当。2013年1月より株式会社クラウドワークスに8番目の社員として参画し、2014年12月に上場を経験。データ分析・産官学連携を軸としながら、B2B事業立ち上げ、カスタマーサポート部門立ち上げ、子会社副社長等を歴任。2018年より現職。